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Abstract—This paper investigates evasion attacks on end-
to-end deep-learning malware detection over ELF (Executable
and Linkable Format) binaries. We show that an attacker can
deliberately modify bytes in a malware ELF binary such that a
well-trained neural network is misled and predicts it as benign.
We examine five methods that can modify ELF binaries without
affecting functionalities and leverage them in evasion attacks. We
explore two state-of-the-art end-to-end deep learning malware
detectors, including MalConv and FireEyeNet, over a real-world
dataset with 1,422 ELF binaries. Our experimental results show
that evasion attacks with 3 out of the 5 methods are effective
and can force the two CNNs to predict incorrectly. For instance,
the most effective modification achieves up to 76.6% evasion
rate on FireEyeNet and 8.4% evasion rate on MalConv. We
also demonstrate that retraining CNNs with deliberately modified
binaries can significantly mitigate evasion attacks.

I. INTRODUCTION

End-to-end deep learning malware detection is a new ap-

proach of detecting malicious binaries [1], [2]. Specifically, all

the bytes from a binary are formulated as a vector and utilized

as an input to a malware detector, where the malware detector

is a neural network. Compared to existing static analysis
methods, end-to-end deep learning malware detection does not

need to perform time-consuming feature engineering.

Despite the promising results, recent studies suggest that

end-to-end deep learning malware detection is vulnerable under

evasion attacks [3], [4], [5], [6], [7], [8], [9]. In an evasion

attack, an adversary intentionally modifies certain bytes in a

malicious binary such that the modified binary still carries

the same functionalities but can force a well-trained neural

network to predict incorrectly (more specifically, outputting

benign rather than malware). Evasion attacks have been suc-

cessfully demonstrated over PE (Portable Executable) binaries

in Windows [3], [4], [5], [6], [7], [8], [9].

In this paper, we investigate evasion attacks on end-to-end

deep learning malware detection over ELF binaries, which

have not been well-investigated. Compared to PE binaries, ELF

binaries used in Linux are more comprehensive in terms of

structures, and therefore, more challenging to modify. Specif-

ically, we examine black-box evasion attacks, in which an

adversary does not have access to the details (weights or

hyperparameters) of a neural network but can query it with

various modified binaries and obtain associated predictions.

Our findings are summarized below:

• We examine five modification methods, referred to as

Header Alteration, Debug Alteration, Padding Alteration,

End Appendix, and Dynamic Extension, which can mod-

ify bytes in ELF binaries without affecting functionalities.

• We explore two state-of-the-art end-to-end deep learning

malware detectors, including MalConv [1] and FireEyeNet

[2], over a real-world dataset containing 1,422 ELF bina-

ries (711 benign and 711 malware). Experimental results

show that the baseline detectors can achieve promising

results in malware detection when there are no evasion

attacks. For instance, MalConv can achieve a 95.5% F1

score and 99.6% AUC (Area Under the Curve).

• We demonstrate that evasion attacks using modified ELF

binaries are effective. Specifically, evasion attacks with the

most effective modification method – Padding Alteration

– can achieve up to 76.6% evasion rate on FireEyeNet

and 8.4% evasion rate on MalConv.

• We find that Padding Alteration, End Appendix and Dy-

namic Extension are all able to evade baseline detectors

successfully. On the other hand, Header Alteration and

Debug Alterations are not effective.

• We find MalConv is much more resilient than FireEyeNet,

where an attack on it achieves a much lower evasion

rate. For instance, evasion rate only reaches 1.6% on

MalConv with an input size of 1 million bytes. We also

show that retraining malware detectors with deliberately

modified ELF binaries is an effective way to mitigate

evasion attacks, especially over MalConv (e.g., mitigating

evasion rate to 0.2% or less).

Reproducibility. Our source code and dataset can be found

at https://github.com/UCdasec/EvilELF.

II. RELATED WORK

White-box evasion attacks [3], [4], [5], [6], [7], [8], [9] have

been proposed in the context of end-to-end malware detection

over PE binaries. White-box attacks require an attack knowing

the details of a neural network while black-box attacks do not.

Specifically, Kolosnjaji et al. [3] proposed an evasion attack

against MalConv by padding optimized values at the end of

each input. Demetrio et al. [4] designed a similar evasion

attack against MalConv by modifying bytes in the DOS header.

Kreuk et al. [5] developed a gradient-based evasion attack that

perturbs bytes in either the slack space or the end-of-file space.

This attack can achieve around 30% evasion rate against Mal-

Conv. Suciu et al. [6] further improved the evasion rate to 70%

against MalConv based on the work in [5]. Sharif et al. [10]
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Fig. 1: System and threat model

proposed an attack to defeat neural-network based malware

detectors by transforming the instructions, more specifically,

binary diversification, without breaking functionalities. This

method applies in-place randomization to replace opcodes

inside a .text section with semantic equivalent opcodes or uses

the jump function to move opcodes into a different section

without altering original functions. Liu et. al. [11] leveraged

different modifications over binaries to evade multiple neural

networks simultaneously. A more comprehensive survey on

evasion attacks over PE binaries can be found in [12]. However,
these attacks are all based on modifications over PE binaries
in Windows and cannot be directly applied to ELF binaries in
Linux.

One recent study [13] proposed two methods to maliciously

modify ELF binaries for evasion attacks on end-to-end deep

learning malware detection. Their first method modifies zero

bytes that are padded to the end of a binary when the size

of a binary is less than the input size of a neural network.

However, it only perturbs data in the input space and no real-

world modified binaries are generated.

Their second method inserts a new section between two

sections by modifying section offsets in the Section Header

Table. However, offsets in the Program Header Table are not

modified correspondingly. As a result, the modification may

result in ELF binaries that are unable to execute. Compared to
[13], our work is able to produce deliberately modified binaries
that can still run in the real world.

III. BACKGROUND

A. System and Threat Model

System Model. The system model includes a malware

detector, which is a neural network. An input to a neural

network is a vector of all the bytes from an ELF binary. The

output is either 0 (benign) or 1 (malicious). All the binaries

utilize the same input size, which is defined in advance. The

input size is the number of bytes in a vector passed to a neural

network. If the actual number of bytes in a binary is less than

the input size, 0x00s are padded at the end. If the actual

number of bytes in a binary is greater than the input size,

additional bytes beyond the input size are trimmed.

Threat Model. A black-box adversary can deliberately

modify a malicious ELF binary, generate a modified malicious

ELF binary, pass the modified ELF binary to the malware

Fig. 2: The high-level structure of an ELF binary

detector, and obtain the prediction result (either 0 or 1). The

goal of this adversary is to evade the malware detector, such

that the malware detector will predict the modified malicious

ELF binary as benign. This is referred to as an evasion attack.

Black-box indicates that the adversary does not know the

details of the neural network but can submit modified ELF

binaries and obtain associated prediction results.

Metric. We use accuracy, precision, recall, F1 score, and

Area Under the Curve (AUC) to measure the performance

of a malware detector. In addition, we use evasion rate to

measure the effectiveness of an attack. Evasion rate is defined

as the ratio between the number of modified binaries bypassing

a neural network and the total number of modified binaries

generated by an adversary.

B. Structure of ELF Binaries

Executable and Linkable Format (ELF) is a standard ex-

ecutable file format typically used in Unix/Linux operating

systems. An ELF binary normally consists of multiple compo-

nents, including the ELF Header, the Program Header Table,

segments/sections, and the Section Header Table [14]. the ELF

Header is strictly defined at the beginning of an ELF binary

while the locations of other components are arbitrary and are

defined in the ELF Header. A high-level description of the ELF

format is illustrated in Fig. 2.

ELF Header. An ELF Header consists of 52 or 64 bytes

for 32-bit or 64-bit binaries respectively. The first few bytes

in an ELF Header contains information regarding file classes,

data encoding, object file types, architecture, and version

information. In addition, an ELF Header also contains the

offsets and sizes of the Program Header Table and Section

Header Table, the number of sections in the ELF binary, etc.

Program Header Table. The Program Header Table de-

scribes segments contained in an ELF binary. It defines the

number of segments contained in the ELF binary, the offset

of each segment, etc. It also enables the operating system to

execute the binary by informing where specific segments need

to be loaded into memory.

Segments/Sections. ELF offers two logical views/organiza-

tions over the same data within a binary: the execution view

and the linking view. The execution view, which is organized

mainly based on segments, informs the operating system how

to load segments when executing an ELF binary. The linking

1703



Fig. 3: An example of Header Alteration: all the 9 padding

bytes and the first byte of e_flags are modified to 0xFF.

Fig. 4: An example of Debug Alteration: all the 45 bytes of

.comment section are modified to 0xFF.

view, which is based on sections, offers information (e.g.,

metadata for debugging) at the link time.

Common sections include initialized data (.data), version

control (.comment), dynamic linking information (.dynamic),

symbolic debugging information (.debug), executable instruc-

tions (.text), a string table (.strtab), and a symbol table

(.symtab). A segment contains one or multiple sections. Com-

mon segments include a loadable segment (PT LOAD) and the

dynamic linking segment (PT DYNAMIC).

Section Header Table.The Section Header Table defines the

size and offset of each section in an ELF binary and contains

all information about the contents of a file. It is not loaded

during the program execution, but it is necessary for linking

and creating the original files.

IV. MODIFICATIONS ON ELF BINARIES

Modifying an ELF binary without affecting its functionalities
is non-trivial. It requires a deep understanding about the struc-

ture of ELF binaries and significant amounts of engineering

efforts. However, existing research [13] has shown that it is

feasible. In this study, we investigate 5 modification methods

and examine their impacts on end-to-end deep-learning mal-

ware detection. These 5 modification methods can modify a

(relatively) large number of bytes and are general, as each one

can be applied to most (if not all) ELF binaries created using

a standard compiler (gcc, clang, etc). For each modification

method we examine, we manually validate that a modified ELF

binary remains functional.

Fig. 5: An example of Padding Alteration: all the 6 padding

bytes are modified to 0xFF.

It is worth mentioning that our list of modification methods
on ELF binaries is obviously not complete. There are more

comprehensive modification methods that could perturb bytes

in ELF binaries, especially when analyzing each ELF binary

individually.

Header Alteration (HA): Header Alteration can modify

bytes in the header of an ELF binary. Specifically, e_flags
has 4 bytes (all 0x00 by default) that can be freely modified.

In addition, there are 9 padding bytes (EI_PAD) in the ELF

identification portion that can be modified without affecting

functionalities. Overall, there are up to 13 modifiable bytes

using Header Alteration. An example of Header Alteration is

illustrated in Fig. 3.

Debug Alteration (DA): Debug Alteration can modify

bytes in multiple sections, including “.comment”,“.note”, and

“.debug” sections, where these sections include version control,

vendor compliance, and debugging information respectively.

All the bytes in these 3 sections can be modified without

affecting the execution, but the particular number of bytes

varies across ELF binaries. In general, it is around 50-300

bytes (in total) in one ELF binary. It is worth mentioning that

these sections are available in non-stripped binaries but not in

stripped binaries1. We assume all the ELF binaries in this study

are non-stripped, which is the default in practice2.

An example of Debug Alteration applied to a .comment

section is presented in Fig. 4. The specific steps for generating

the modified ELF binary are described below.

• We first scan the ELF Header to find the string table index.

Given the index, we scan the Section Header Table to find

the offset of the string table. From the string table, we can

1To generate a stripped binary, one can use -s option when compile the C
code with gcc or use strip command on a non-stripped binary.

2Modifying bytes in stripped binaries is extremely challenging. Although it
is an interesting problem, it is out of the scope of this study.
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Fig. 6: An example of End Appendix: a new section with 64 dummy bytes is appended starting at offset 0x00003708.

learn the index of the .comment section (details skipped

in Fig. 4).

• Given the index of the .comment section, we scan the

Section Header Table to find the offset of the .comment

section (0x00003010) and its size (45 or 0x002D).

• We modify 45 bytes starting from offset 0x00003010.

Padding Alteration (PA). Padding Alteration modifies

padding bytes, which are dummy zero (0x00) bytes before

the end of each section in an ELF binary. Specifically, if the

number of bytes associated with program instructions in a

section is not a multiple of the word size, a compiler will

automatically append a minimal number of zero bytes to the

end of a section. We denote these zero bytes as padding

bytes. The offset and size of a section defined in the Section

Header Table ensure these padding bytes are not involved in the

program execution. As a result, padding bytes can be modified

arbitrarily without affecting functionalities. The number of

padding bytes at the end of a section can be computed based

on the offset of this section, the size of this section, and the

offset of the next section.

A concrete example of altering 6 bytes with Padding Alter-

ation is illustrated in Fig. 5. The specific steps for generating

the modified ELF binary are described below.

1) We pick a section and find its offset (0x00000542) and

size (0x0010) in the Section Header Table.

2) We find the next section offset (0x00000558) in the

Section Header Table.

3) We calculate the number of padding bytes in the section

as 0x0558 - 0x0542 - 0x0010 (i.e., 1368 - 1346 -

16) = 6.

4) We modify the 6 padding bytes before offset

0x00000558.

End Appendix (EA). End Appendix can append a new

section with an arbitrary number of dummy bytes near the

end of the file (i.e., after the last section but before the Section

Header Table). Specifically, given an original ELF binary, we

first decide how many bytes we need to include in this new

section. Then, we modify multiple bytes associated with this

new section in the ELF Header (including the number of

sections and the offset of Section Header Table) and also

multiple bytes in the Section Header Table (including the size

and offset of this new section) . Next, the new section with

dummy bytes is appended to the last section of the original

binary. These dummy bytes can be arbitrary bytes. Particularly,

for ease of implementation, we implement two options: (1)

constant bytes (e.g., all 0xFF) or (2) variable bytes (e.g., bytes

from benign binaries).

A concrete example of appending 64 bytes with End Ap-

pendix is illustrated in Fig. 6. The specific steps for generating

the modified ELF binary are described below.

1) We choose to create a new section with 64 dummy bytes,

where each byte is 0xFF.

2) We record the Section Header Table offset

(0x00003708) in the original ELF Header and

leverage this offset as the offset of the new section.

3) All the bytes starting at 0x00003708 in the original

ELF binary are shifted down with an offset of 64 (i.e.,

0x40), which is the number of dummy bytes. As a result,

we need to increase the Section Header Table offset by

64 (0x00003708 to 0x00003748) and increase the
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Fig. 7: An example of Dynamic Extension: 64 dummy bytes are inserted starting at offset 0x00002FB0.

number of sections by 1 (0x1F to 0x20) in the ELF

Header.

4) We insert the new section with 64 dummy bytes starting

at 0x00003708
5) We create 64 header bytes for the new section at the end

of the Section Header Table. We add these 64 bytes by

copying the 64 header bytes from the last section of the

original ELF binary but assigning the new section offset

as 0x00003708 and the new section size as 0x0040.

Dynamic Extension (DE). Dynamic Extension extends

the size of the dynamic segment (i.e., PT DYNAMIC) by

appending dummy bytes at the end of it. The dynamic segment

specifies dynamic linking information for an ELF binary and

appears (relatively) late in an ELF binary, typically after most

PT LOAD segments. The dynamic segment contains only one

section, named the .dynamic section. Since the bytes of the

dynamic segment are not loaded into memory but only read

by the dynamic linker during execution, an arbitrary number

of dummy bytes can be appended at the end of the dynamic

segment without affecting execution.

To append bytes successfully, associated information regard-

ing the size of this segment, the size of the .dynamic section,

the offsets of all the subsequent segments and sections, and

the offset of the Section Header Table will all need to be

updated in the ELF Header, the Program Header Table, and

the Section Header Table respectively. This modification shares

a similar concept as End Appendix but modifies bytes earlier

in a binary. The main difference is that this modification also

needs to modify bytes in the Program Header Table while End

Appendix does not.

A concrete example of adding 64 bytes in the dynamic

segment with Dynamic Extension is illustrated in Fig. 7. The

specific steps for generating the modified ELF binary are

described below.

1) We choose to extend the dynamic segment (i.e., .dynamic

section) with 64 dummy bytes, where each byte is 0xFF.

2) We find the offset of the segment,0x00002FB0, next to

the dynamic segment by scanning each segment defined

in the Program Header Table (skipped in Fig. 7).

3) We increase the offset of all bytes starting at

0x00002FB0 in the original ELF binary by 64 (0x40),

which is the number of dummy bytes.

4) We insert 64 dummy bytes starting at 0x00002FB0.

5) We increase the size of the dynamic segment in the

Program Header Table by 64 (0x10F0 to 0x2030). We

increase the size of the .dynamic section in the Section

Header Table by 64 (0x10F0 to 0x2030).

6) We increase the offset of the Section Header Table by

64 (0x00003708 to 0x00003748).

7) Besides the Section Header Table, if there are more

sections or segments that are after the dynamic segment,

we increase the offset of each of these sections by 64 in

the Section Header Table and increase the offset of each

of these segments by 64 in the Program Header Table

(skipped in Fig. 7).

V. EVALUATION

Dataset. We leverage a public dataset3, referred to as the

Labeled-Elfs dataset. It contains a total of 39,521 ELF binaries

(711 malicious binaries and 38,810 benign binaries) produced

using x86-64 architecture (little endian)4. The 711 malicious

3https://github.com/nimrodpar/Labeled-Elfs
4There is also a small number of benign binaries generated for ARM 32 in

the original dataset, we exclude those in our study.
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ELF binaries were produced from 4 malware (written in C),

including Mirai-vanilla, BASHLITE-1.0, BASHLITE-lizkebab,

and lightaidra-1.0. Multiple compilers (gcc, clang, and

llvm) with different versions and various optimization levels

(O1, O2, O3, and Os) were applied when producing these

binaries. All the ELF binaries are non-stripped, and some of

the malware binaries are obfuscated5. The distribution of file

size of this dataset is presented in Fig. 8.

(a) All Binaries (b) Malicious Binaries Only

Fig. 8: Distribution of ELF binary size (Labeled-Elfs).

We establish one subset from this dataset for our evaluation.

We refer this subset as Labeled-Elfs-Balanced. It contains all

the 711 malicious binaries and 711 random benign binaries

from the original dataset.

Neural Networks. We use two CNNs, including MalConv

and FireEyeNet, as baseline detectors that a black-box adver-

sary could attack. Both networks are originally designed for

deep-learning malware detection over PE files in Windows.

MalConv. MalConv [1] is a neural network that combines

a convolutional neural network with a global max-pooling

before transferring to connected layers. This model uses one

8-dimensional embedding layer, two 1-dimensional gated con-

volutional layers, a temporal max pooling layer, and a fully

connected layer with softmax. The embedding layer maps each

byte to a fixed length feature vector, which reduces bias in byte

values. Also, the convolutional layers holds a large filter width

of 500 bytes and a stride of 500 bytes, with 128 filters total. The

maximum input size examined in [1] is 1 MB. We set window

size as 500, epochs as 50, batch size as 32, and learning rate

as 0.0001.

FireEyeNet. FireEyeNet [2] was proposed by researchers

from FireEye. It consists of one 10-dimensional embedding

layer, five stacked 1-dimensional convolutional and max pool-

ing layers, followed by a fully connected layer with sigmoid

function. The maximum input size of each program examined

in [2] is 102,400 and it achieves 98% AUC and 96% accuracy

over a private large-scale PE binary dataset.

Experiment Setting. We use a Linux machine with an

i5 CPU, 32GB memory, and one Nvidia Titan RTX GPU

to perform all the experiments. We develop a tool, named

EvilELF, to perform each modification automatically over an

ELF binary.

Experiment 1: Performance of Baseline Detectors. We

investigate the performance of baseline detectors for end-to-end

5Our modification methods also work for obfuscated non-stripped binaries.

deep-learning malware detection over ELF files. Specifically,

we leverage MalConv as the architecture of baseline neural

networks and we explore multiple detectors with various input

sizes, including 100K, 200K, 500K, and 1000K respectively,

by using Labeled-Elfs-Balanced.

When we train each baseline detector, we use 80% of data

for training, 10% for validation, and 10% for testing. Detailed

results are presented in Table I. In addition to MalConv, we

also train baseline detector with FireEyeNet using input size

102400, 204800, and 409600 respectively. Overall, we observe
that these baseline detectors have promising performance in
malware detection.

TABLE I: The performance of baseline detectors over Labeled-

Elfs-Balanced

Detector ACC Precision Recall F1 AUC
MalConv 100k 97.2% 98.5% 95,8% 97.2% 99.5%
MalConv 200k 97.2% 100.0% 100.0% 97.2% 99.5%
MalConv 500k 97.9% 98.5% 92.1% 95.2% 99.6%
MalConv 1000k 95.1% 97.1% 95.8% 96.5% 99.7%
FireEye 102400 98.5% 97.2% 97.1% 97.1% 99.5%
FireEye 204800 99.2% 100.0% 100.0% 99.3% 99.5%
FireEye 409600 97.8% 95.7% 95.8% 97.8% 98.7%

Experiment 2: Evasion Attacks on Baseline Detectors.
We examine evasion attacks on baseline detectors. We apply

each of the 5 modification methods separately. We examine

both MalConv and FireEyeNet with different input sizes.

Specifically, given each modification method, we randomly

pick 5 malware binaries that are predicted as malicious by

all 4 MalConv baseline detectors, Then, we generate 1,000

modified versions of these 5 malware binaries by using the

given modification method. Next, we pass these 1,000 modified

binaries to each baseline detector to measure the evasion rate.

We repeat the attacks with 5 trials and record the mean evasion

rate. All the 1,000 modified binaries are different across the 5

trials. We repeat the same process for FireEyeNet detectors.

For End Appendix or Dynamic Extension, we examine two

ways, including (1) constant dummy bytes and (2) variable

dummy bytes from benign binaries, for altering bytes. For

constant dummy bytes, we randomly choose a byte from

[0x40, 0xFF]. We set the number of dummy bytes as 200,000

in this experiment.

Observations from Experiment 2. As shown in Table II, we

have 3 major observations

• End Appendix (Constant), Dynamic Extension (Constant),
and Padding Alteration are able to defeat baseline de-
tectors. For example, Padding Alteration achieves 8.4%

evasion rate on MalConv 100k and 76.6% evasion rate

on FireEye 102400.

• We also observe that the evasion rate decreases when
the input size of MalConv increases. This suggests that

MalConv with a higher input size is more resilient against

evasion attacks with our modifications. Conversely, we

observe FireEyeNet is more vulnerable with a larger input.

• Header Alteration and Debug Alteration are ineffective
(i.e., evasion rate is or is close to 0%). This is likely
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TABLE II: Evasion Rate (mean) on Baseline Detectors

Detector Header Padding Debug End Appendix End Appendix Dynamic Extension Dynamic Extension
Alteration Alteration Alteration (Constant, 200k) (Variable, 200k) (Constant, 200k) (Variable, 200k)

MalConv 100k 0% 8.4% 0% 7.3% 0% 8.1% 0%
MalConv 200k 0% 5.3% 0% 4.5% 0.5% 4.8% 1.1%
MalConv 500k 0% 2.6% 0% 1.1% 0.2% 1.0% 0%
MalConv 1000k 0% 1.6% 0% 0.8% 0% 0.8% 0.1%
FireEye 102400 0% 76.6% 0.7% 42.5% 0.7% 51.9% 52.4%
FireEye 204800 0% 27.3% 2.0% 32.1% 2.0% 31.7% 31.1%
FireEye 409600 0% 20.2% 0.1% 48.8% 0.1% 73.9% 74.6%

TABLE III: The Impact of the Number of Dummy Bytes in End Appendix on Evasion Rate (mean)

Constant Bytes Variable Bytes (Benign)
100 1k 10k 100k 200k 100k 200k 400k

MalConv 100k 0% 7.3% 7.2% 7.3% 7.3% 0% 0% 0%
MalConv 200k 0% 4.5% 4.5% 4.5% 4.5% 0.1% 0.4% 0.4%
MalConv 500k 0% 1.1% 1.1% 1.1% 1.1% 0% 0.1% 0.2%
MalConv 1000k 0% 0.8% 0.8% 0.8% 0.8% 0% 0% 0.1%
FireEye 102400 2.2% 21.4% 24.0% 42.5% 42.5% 0.7% 0.7% 0.7%
FireEye 204800 15.7% 27.7% 28.2% 32.8% 32.1% 2.0% 2.0% 2.0%
FireEye 409600 2.2% 20.5% 20.5% 23.0% 48.9% 0.1% 0.1% 0.1%

TABLE IV: The Impact of the Number of Dummy Bytes in Dynamic Extension on Evasion Rate (mean)

Constant Bytes Variable Bytes (Benign)
100 1k 10k 100k 200k 100k 200k 400k

MalConv 100k 0% 7.2% 7.2% 8.1% 8.1% 0% 0% 0%
MalConv 200k 0% 3.3% 3.3% 4.6% 4.8% 0.1% 1.1% 1.1%
MalConv 500k 0% 0.9% 0.9% 1.0% 1.0% 0% 0% 0.1%
MalConv 1000k 0% 0.5% 0.5% 0.8% 0.8% 0% 0.1% 0.1%
FireEye 102400 6.4% 29.3% 33.4% 51.9% 51.9% 52.4% 52.4% 52.4%
FireEye 204800 13.5% 27.5% 27.9% 34.7% 31.7% 31.1% 31.1% 31.1%
FireEye 409600 58.6% 21.3% 20.2% 41.6% 74.0% 74.6% 74.6% 74.6%

because the two methods modify a small number of bytes.

• MalConv is much more robust than FireEyeNet under
evasion attacks.

Experiment 3: Impacts of the Number of Dummy Bytes
(End Appendix and Dynamic Extension). We examine the

impacts of the number of dummy bytes in End Appendix and

Dynamic Extension. Specifically, given a modification method,

we again produce 1,000 malicious binaries and pass them to

a baseline detector to measure the evasion rate. We investigate

the impact of different amounts of dummy bytes.

As presented in Table III, we notice that if the number of

dummy bytes is greater than 1,000, increasing the number of

dummy bytes further in End Appendix (with constant bytes)

does not affect the evasion rate for MalConv. We have a

consistent observation for Dynamic Extension in Table IV. For

FireEyeNet, the evasion rate continues to increase with the

number of dummy bytes for constant byte modifications.

Experiment 4: Mitigating Evasion Attacks. In previous

experiments, we have shown that MalConv with an input size

of 1 million bytes is resillient under evasion attacks. In this

experiment, we retrain a baseline detector by using the original

binaries and also perturbed malicious binaries in order to

reduce evasion rate in evasion attacks.

Specifically, given 711 malicious ELF binaries and 711 be-

nign ELF binaries, we first generate 1,250 modified malicious

binaries given each modification by following the steps in

previous experiments. Then, we retrain a detector with 961

TABLE V: Evasion rate on detectors that are retrained with

modified malicious binaries)

Detector Padding Alteration
MalConv 100k 0%
MalConv 200k 0.2%
MalConv 500k 0%
MalConv 1000k 0%
FireEye 102400 3.1%
FireEye 204800 2.0%
FireEye 409600 1.0%

malicious binaries (711 original and 250 modified) and 711

benign binaries and measure the evasion rate on the retrained

detector with the remaining 1,000 modified malicious binaries.

We evaluate both MalConv and FireEyeNet with different input

size. We find that retraining a neural network with deliberately

modified binaries can effectively mitigate evasion attacks as

shown in Table V. On the other hand, generating sufficient de-

liberately modified binaries with various modification methods

could be difficult to scale, especially when there are a large

number of malicious binaries in a dataset.

Experiment 5: Evading Real-World Malware Detec-
tors on VirusTotal. We investigate whether our deliberately

modified binaries could evade real-world malware detectors

that may (or may not) use end-to-end malware detection.

Specifically, we choose five original malicious binaries, and

for each one, we generate one modified malicious binaries

using Padding Alteration. Then, we submit the 5 original
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TABLE VI: Evasion on Real-World Malware Detectors (Virus-

Total, 62 detectors in total, examined in August 2023)

Name of Malware Binary
No. of Detectors

Reporting Malware

Original

lightaidra-1.0 (clang-6.0.1, Os) 23
BASHLITE-client-1.0 (gcc-7.1.0, O0) 35
BASHLITE-client-1.0 (gcc-9.1.0, O2) 29

Mirai-vanilla (gcc-8.4.0, O0) 35
Mirai-vanilla (gcc-8.4.0, Os) 9

Modified

lightaidra-1.0 (clang-6.0.1, Os) 7
BASHLITE-client-1.0 (gcc-7.1.0, O0) 33
BASHLITE-client-1.0 (gcc-9.1.0, O2) 17

Mirai-vanilla (gcc-8.4.0, O0) 7
Mirai-vanilla (gcc-8.4.0, Os) 8

malicious binaries and the 5 modified ones to VirusTotal6,

an online virus detection website. For each binary, VirusTotal

returns detection results, either malicious or benign, from 62

major malware detection services, including Avast, Microsoft,

Kaspersky, McAfee, etc.

We observe that (1) Each original malicious ELF binaries
can be detected by about half of the real-world malware
detectors; (2) The number of detectors that can detect each
modified malicious ELF binary drops significantly.

For instance, 35 detectors can label the original binary

of Mirai-vanilla (compiled with 8.4.0 with O0 optimization).

However, after our modification with Padding Alteration, only

7 detectors can still identify the modified one as malicious.

It is also worth mentioning that, among all the 62 detectors,

only 6 detectors, including AVG, Kaspersky, Avast, Microsoft,

ZoneAlarm, and ESET-NOD32, are able to detect all the 5

modified binaries in this experiment.

VI. DISCUSSION AND FUTURE WORK

Combining Multiple Modification. We only investigate

the cases where modified binaries are generated by a single

modification method. Combinations of multiple modification

methods can alter more bytes in a binary, and therefore, may

lead to a higher evasion rate. We will leave this as future work.

More Modification Methods. There are other methods that

can also modify ELF binaries. For instance, patching [15] is

often used to modify specific instructions in a binary. It would

be interesting to explore whether evasion attacks with patching

are effective and to what degree. On the other hand, the bytes

that can be modified with patching are specific in each binary

while the methods we examine are generic.

Modifying Benign Binaries. We only examine modifica-

tions over malicious binaries in this study. An attack can

also modify benign binaries such that it can include malicious

instructions. It is even more challenging to achieve, especially

with a great number of bytes. We leave it as future work.

Static Analysis Only. We demonstrate that our evasion

attacks are effective on detectors based on static analysis. On

the other hand, we acknowledge that our modified binaries

cannot bypass detectors based on dynamic analysis (e.g., API

calls) as our modifications do not change program execution.

6https://www.virustotal.com/gui/home/upload

Larger Datasets. We use a dataset with less than 1,500

binaries in our evaluations. Having a larger dataset and ob-

serving the results over it would be interesting. However, large-

scale datasets with malware ELF binaries are often not publicly

available or difficult to acquire.

VII. CONCLUSION

We examine five modification methods that can generate ma-

licious ELF binaries without affecting original functionalities.

In addition, we leverage these modifications in evasion attacks

on end-to-end deep learning malware detection. Experimental

results show that evasion attacks on end-to-end deep learning

malware detection is feasible. We also observe that retraining

malware detectors with deliberately modified malicious bina-

ries can significantly mitigate evasion attacks.
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